
Computers & Operations Research 35 (2008) 2892–2907
www.elsevier.com/locate/cor

A hybrid genetic and variable neighborhood descent algorithm for
flexible job shop scheduling problems

Jie Gaoa,b, Linyan Suna, Mitsuo Genb,∗
aSchool of Management, Xi’an Jiaotong University, Xi’an 710049, China

bGraduate School of Information, Production & Systems, Waseda University, Kitakyushu 808-0135, Japan

Available online 2 February 2007

Abstract

This paper addresses the flexible job shop scheduling problem (fJSP) with three objectives: min makespan, min maximal machine
workload and min total workload. We developed a hybrid genetic algorithm (GA) for the problem. The GA uses two vectors
to represent solutions. Advanced crossover and mutation operators are used to adapt to the special chromosome structure and
the characteristics of the problem. In order to strengthen the search ability, individuals of GA are first improved by a variable
neighborhood descent (VND), which involves two local search procedures: local search of moving one operation and local search
of moving two operations. Moving an operation is to delete the operation, find an assignable time interval for it, and allocate it in
the assignable interval. We developed an efficient method to find assignable time intervals for the deleted operations based on the
concept of earliest and latest event time. The local optima of moving one operation are further improved by moving two operations
simultaneously. An extensive computational study on 181 benchmark problems shows the performance of our approach.
� 2007 Published by Elsevier Ltd.

Keywords: Flexible job shop scheduling; Genetic algorithms; Variable neighborhood descent; Critical path

1. Introduction

In the job shop scheduling problem (JSP), there are n jobs that must be processed on a group of m machines. Each
job i consists of a sequence of m operations (oi1, oi2, . . . , oim), where oik (the kth operation of job i) must be processed
without interruption on a predefined machine mik for pik time units. The operations oi1, oi2, . . . , oim must be processed
one after another in the given order and each machine can process at most one operation at a time.

In this paper we study a generalization of JSP called the flexible job shop scheduling problem (fJSP), which provides
a closer approximation to a wide range of scheduling problems encountered in real manufacturing systems.

In a flexible job shop, each job i consists of a sequence of ni operations (oi1, oi2, . . . , oini
). The fJSP extends JSP

by allowing an operation oik to be executed by one machine out of a set Aik of given machines. The processing time of
operation oik on machine j is pikj > 0. The fJSP problem is to choose for each operation oik a machine M(oik) ∈ Aik

and a starting time sik at which the operation must be performed.

∗ Corresponding author. Tel./fax: +81 93 692 5273.
E-mail addresses: calebgao@yahoo.com (J. Gao), lysun@mail.xjtu.edu.cn (L. Sun), gen@waseda.jp (M. Gen).

0305-0548/$ - see front matter � 2007 Published by Elsevier Ltd.
doi:10.1016/j.cor.2007.01.001

http://www.elsevier.com/locate/cor
mailto:calebgao@yahoo.com
mailto:lysun@mail.xjtu.edu.cn
mailto:gen@waseda.jp

J. Gao et al. / Computers & Operations Research 35 (2008) 2892–2907 2893

fJSP is therefore made more complex than JSP by the need to determine a routing policy (i.e., which machine to
assign for each operation) other than the traditional scheduling decisions (i.e., to determine the starting time of each
operation). In this study, we consider minimizing the following three criteria:

(1) Minimize the makespan (CM) of the jobs.
(2) Minimize the maximal machine workload (WM), i.e., the maximum working time spent at any machine. This

objective is to prevent a solution from assigning too much work on a single machine and to keep the balance of
work distribution over the machines.

(3) Minimize the total workload (WT), which represents the total working time assigned over all machines. This
objective is of interest if machine efficiencies differ.

In contrary to those multiobjective optimization problems in which there are no priorities among the objectives,
makespan is given the first importance, maximal machine workload is given the secondary importance, and total
workload is given the least importance in this study. When two solutions with different makespans are compared, we
always prefer the solution with a smaller makespan regardless of its maximal machine workload and total workload.

In this paper, a hybrid genetic and variable neighborhood descent (VND) algorithm is used to treat the fJSP problem.
The genetic algorithm (GA) uses two vectors to express the machine assignment and operation sequence information for
fJSP solution candidates. The operation sequence vector uses two representation methods: Gen et al.’s [1] representation
and permutation representation. Under the framework of the GA, a VND is applied to each newly generated offspring to
improve its quality before injecting it into the population. The VND improves a solution first by moving one operation.
When the local optimum of moving one critical operation is found, it is further improved by moving two operations
simultaneously.

In Section 2, an overview of previous research is provided. Section 3 presents the representation method, decoding
procedure and genetic operators of the GA. The VND and the framework of the hybrid GA are presented in Section 4. In
Section 5, we provide an extensive computational study on 181 benchmark problems where our approach is compared
with previous approaches. Some final concluding remarks are given in Section 6.

2. Literature review

Bruker and Schlie [2] gave a polynomial algorithm for solving flexible job shop scheduling problems with two jobs.
Based on the observation that fJSP turns into the classical job shop scheduling problem when a routing is chosen, early
literature [3–6] proposed hierarchical strategies for the complex scheduling problem, where job routing and sequencing
are studied separately.

Jurisch [7] considered the routing and scheduling decisions simultaneously. Hurink et al. [8] and Chambers [9]
developed tabu search algorithms to solve the problem. Dauzère-Pérès and Paulli [10] extended the classical disjunctive
graph model for job shop scheduling to take into account the fact that operations have to be assigned to machines in
the fJSP problem. Based on the extended disjunctive graph, a new neighborhood structure is defined and a tabu search
procedure is provided to solve the problem. Mastrolilli and Gambardella [11] proposed two neighborhood functions
for this problem. They proposed a tabu search procedure and provided an extensive computational study on 178 fJSP
problems and 43 JSP problems. Their approach found 120 new better upper bounds and 77 optimal solutions over the
178 fJSP benchmark problems and it was outperformed in only one problem instance.

Yang [12] presented a genetic algorithm (GA)-based discrete dynamic programming approach. Kacem and Borne [13]
proposed a localization approach to solve the resource assignment problem, and an evolutionary approach controlled
by the assignment model for the fJSP problem. Zhang and Gen [14] proposed a multistage operation-based GA to deal
with the problem from a point view of dynamic programming. Xia and Wu [15] treated this problem with a hybrid
of particle swarm optimization (PSO) and simulated annealing (SA) as a local search algorithm. Wu and Weng [16]
considered the problem with job earliness and tardiness objectives, and proposed a multiagent scheduling method.

Vaessens [17] defined a neighbor for the fJSP problem by deleting an operation r from the machine ordering,
identifying a set of feasible insertions containing the optimal one and inserting r in the best-possible way. Vaessens’
algorithm spends a considerable amount of computing time defining such a set of feasible insertions. Brucker and Neyer
[18] also proposed the best insertion of an operation in their neighborhood function, but the algorithm they suggested is
too time consuming. In order to reduce the computational effort, they proposed a faster algorithm that guarantees only

2894 J. Gao et al. / Computers & Operations Research 35 (2008) 2892–2907

the feasibility of an insertion. Mastrolilli and Gambardella [11] reduced the set of possible neighbors to a subset which
always contains neighbors that are possible to be superior to the incumbent one. Yet, the quality of a feasible insertion
has to be judged by calculating the makespan of the solution after insertion. They used an approximation algorithm to
evaluate the makespan of the neighbor solutions.

3. A GA for fJSP

3.1. Two-vector representation

The fJSP problem is a combination of machine assignment and operation scheduling decisions, so a solution can be
expressed by the assignment of operations on machines and the processing sequence of operations on the machines.
Using GA terminology, a chromosome is therefore composed of two parts:

(1) machine assignment vector (hereafter called v1),
(2) operation sequence vector (hereafter called v2).

In each machine assignment vector v1, v1(r) represents the machine selected for the operation indicated at position
r . Fig. 1 illustrates a machine assignment vector. For example, in Fig. 1, position 2 indicates o1,2, and v1(2) represents
the machine assigned for o1,2.

A permutation representation is perhaps the most natural way to express operation sequences. Unfortunately because
of the existence of precedence constraints, not all the permutations of the operations define feasible sequences. For
job shop scheduling problems, Gen et al. [1] proposed an alternative: they name all operations for a job with the
same symbol and then interpret them according to the order of occurrences in the sequence of a given chromosome.
Gen et al.’s method can also be used to represent operation sequences for fJSP problems. Each job i appears in the
operation sequence vector (v2) exactly ni times to represent its ni ordered operations. For example, the operation
sequence depicted in Fig. 2 can be translated into a list of ordered operations below:

o2,1 � o4,1 � o3,1 � o1,1 � o4,2 � o1,2 � o4,3 � o3,2 � o2,2 � o1,3 � o3,3 � o1,4 � o2,3 � o4,4 � o3,4 � o2,4

The main advantages of Gen et al.’s representation are that each possible chromosome always represents a feasible
operation sequence, and that the coding space is smaller than that of permutation representation.

With the two-vector representation, a number of feasible chromosomes are generated at random to form the initial
population. Afterwards, a decoding procedure translates the chromosomes into fJSP schedules, and genetic operations
evolve the population towards better solutions.

3.2. Priority-based decoding and reordering

In principle, a chromosome of the fJSP problem can be decoded into an infinite number of schedules because
superfluous idle time can be inserted between operations. We shift the operations to the left as compact as possible.
A shift is called a local left-shift if some operation is started earlier without altering the operation sequence. A shift
is called a global left-shift if some operation is started earlier without delaying any other operations even though the
shift has changed the operation sequence. A schedule is semiactive if no local left-shift exists, and is active if no global
left-shift exists.

Fig. 1. Illustration of the machine assignment vector.

Fig. 2. Illustration of Gen et al.’s operation sequence representation.

Usuario
Realce

J. Gao et al. / Computers & Operations Research 35 (2008) 2892–2907 2895

When considering a regular performance measure (e.g. makespan), the optimal schedule is within the set of active
schedules [19]. In this paper, we use priority-based decoding to translate chromosomes into active schedules.

Because of precedence constraints among operations of the same job, idle time may exist between operations on a
machine. Let sik be the starting time of oik and cik its completion time. An operation oik can only be started after its
immediate job predecessor oi(k−1) is completed. Given a time interval [tS

j , tE
j] beginning from tS

j and ending at tE
j on

machine j to allocate oik , we have

Sik =
{

max{tS
j , ci(k−1)} if k�2,

tS
j if k = 1.

(1)

Time interval [tS
j , tE

j] is available for oik if there is enough time span from the starting of oik until the ending of the
interval to complete it, i.e.,{

max{tS
j , ci(k−1)} + pikj � tE

j if k�2,

tS
j + pikj � tE

j if k = 1.
(2)

The proposed priority-based decoding allocates each operation on its assigned machine one by one in the order
represented by the operation sequence vector. When operation oik is scheduled on machine j , the idle time intervals
between operations that have already been scheduled on the machine are examined from left to right to find the earliest
available one. If such an available interval exists, it is allocated there; otherwise, it is allocated at the end of machine j .

The priority-based decoding method allows an operation to search the earliest available time interval on the machine.
Hence, operation r may be processed earlier than another operation v, which appears before r in the operation sequence
vector. In order to facilitate offspring to inherit the operation sequence information of their parents, it is necessary to unify
the operation sequence in the chromosome with the sequence in the corresponding decoded schedule. The operation
sequence in a chromosome is reordered according to the operations’ starting time in the decoded schedule before the
chromosome involves crossover and mutation operations.

3.3. Crossover operators

In Gen et al.’s [1] representation, each allele of the operation sequence vector does not indicate a concrete opera-
tion of a job but refers to an operation that is context-dependent. Hence, it is hard for crossover to create offspring
operation sequences that combine the characteristics of their parental solutions. In order to strengthen the heritability,
the operation sequence vector of the original Gen et al.’s representation is transformed into the style of permutation
representation.

Although it is natural to represent an operation by job number and operation sequence, an operation can also be
represented through a fixed ID as shown in Fig. 3. In the permutation representation, operations are listed in the order of
their priority. The operation sequence shown in Fig. 2 can be transformed into the style of permutation representation
shown in Fig. 4, where v3(s) denotes the ID of operation with the sth priority.

During the past decades, several crossover operators have been proposed for permutation representation, such as
partial-mapped crossover, order crossover, cycle crossover, and so on [20]. Here we apply order crossover for the

Fig. 3. Illustration of the fixed ID for each operation.

Fig. 4. Illustration of the permutation operation sequence vector.

2896 J. Gao et al. / Computers & Operations Research 35 (2008) 2892–2907

81216741136101521419135 81216741136101521419135

16871241136101521415139 16871241136101521415139

16483712611152145101319 16483712611152145101319

Parent 1

Parent 2

Offspring

Fig. 5. Illustration of the order crossover on operation sequence.

operation sequence vectors. The order crossover works as follows:
Step 1: Select a subsection of operation sequence from one parent at random.
Step 2: Produce a proto-child by copying the substring of operation sequence into the corresponding positions.
Step 3: Delete the operations that are already in the substring from the second parent. The resulted sequence of

operations contains operations that the proto-child needs.
Step 4: Place the operations into the unfixed positions of the proto-child from left to right according to the order of

the sequence in the second parent.
The procedure is illustrated in Fig. 5.
We use two crossover operators for the machine assignment vectors: extended order crossover and uniform crossover.

The extended order crossover is related to crossover for operation sequence. It copies the machine assigned for an
operation from the same parent where its operation sequence comes. Uniform crossover is accomplished by taking an
allele from either parental machine assignment vector to form the corresponding allele of the child.

The offspring operation sequences generated by order crossover are transformed back into the format of Gen et al.’s
representation by replacing each operation with its job number before they are released into the population. The order
crossover does not ultimately generate any infeasible operation sequence vectors because Gen et al.’s representation
repairs them into feasible ones. It is obvious that the two crossovers on machine assignment vector will not assign
infeasible machines for operations.

3.4. Mutation operators

In this study, two kinds of mutation operations are implemented: allele-based mutation and immigration mutation.
For machine assignment vectors, allele-based mutation randomly decides whether an allele should be selected for
mutation with a certain probability. Then, another available machine will be assigned for the operation indicated
by the selected allele. For operation sequence vectors, allele-based mutation randomly decides whether to mutate
an allele r . If allele r is to be mutated, then another allele is randomly selected to exchange with it. Immigration
mutation randomly generates a number of new members of the population from the same distribution as the initial
population.

3.5. Selection

For the proposed hybrid genetic algorithm (hGA), selection performs on enlarged sampling space, where both parents
and offsprings have the same chance of competing for survival. In order to overcome the scaling problem of the direct
fitness-based approach, ranking selection is introduced. The idea is straightforward: sort solutions in the population
from the best to the worst according to their performance on the three considered criteria, and assign the selection
probability of each chromosome based on the ranking. In each generation, a number of best solutions are reserved,
while the rest are selected by roulette wheel selection [22] to fill the entire population. During the roulette wheel
selection process, duplicate chromosomes are prohibited from entering the population.

4. Variable neighborhood descent

The evolution speed of simple GAs is relatively slow [21]. One promising approach for improving the convergence
speed to improved solutions is the use of local search in GAs. Within a hybrid of GA and local search, a local optimizer

J. Gao et al. / Computers & Operations Research 35 (2008) 2892–2907 2897

Fig. 6. Illustration of disjunctive graph.

is added to GAs and applied to every child before it is inserted into the population. GAs are used to perform global
exploration among populations, while local search is used to perform exploitation around chromosomes. Because the
local search can use much of the problem-specific knowledge to improve the solution quality, the hybrid approach often
outperforms either method operating alone [22].

Variable neighborhood search (VNS) is based on a simple principle: systematic change of neighborhood within
a possibly randomized local search [23,24]. The VND method is obtained if change of neighborhoods is performed
in a deterministic way. In this study, VND works as a kind of local search method under the framework of the
proposed GA.

4.1. Solution graph

The feasible schedules of fJSP problems can be represented with a directed graph G = (N, A, E), with node set N ,
ordinary arc set A, and disjunctive arc set E. The nodes of G correspond to operations, the real arcs (A) to immediate
precedence relations, and the dashed arc (E) to immediate implementation sequence of operations to be performed on
the same machine. Fig. 6 gives an example.

In Fig. 6, S and T are dummy starting and terminating nodes, respectively. The number associated to each node
represents the processing time of that operation. The job predecessor PJ(r) of an operation r is the operation preceding
r in the operation sequence of the job to which r belongs. The machine predecessor PM(r) of an operation r is the
operation preceding r in the operation sequence on the machine that r is processed on. If node r is a job predecessor
of v, then node v is a job successor of r , SJ (r). If node r is a machine predecessor of v, then node v is a machine
successor of r , SM(r).

4.2. Earliest event time and latest event time

Two key building blocks in directed solution graphs are the concepts of earliest starting time (sE) and latest starting
time (sL) of an operation. The earliest starting time of operation r , represented by sE(r), is the earliest time at which the
implementation of operation r can begin. The latest starting time of operation r , represented by sL(r), is the latest time
at which the implementation of operation r can begin without delaying the completion of the jobs (i.e., the makespan).
Correspondingly, we can define the earliest completion time (cE) and the latest completion time (cL) for an operation
as follows:

cE(r) = sE(r) + t (r), cL(r) = sL(r) + t (r), (3)

where t (r) is the processing time of node r .
To find the earliest starting time of each node in the directed solution graph, we begin by noting that since node

S represents the start of the schedule, sE(S) = 0. The earliest starting time of each node is defined by the earliest

2898 J. Gao et al. / Computers & Operations Research 35 (2008) 2892–2907

completion times of its job predecessor and its machine predecessor (if it has one):

sE(r) = max{cE[PJ(r)], cE[PM(r)]}. (4)

In case a node has no job predecessor or machine predecessor, the corresponding term is replaced with “0”.
To compute the latest completion time, we begin with the terminating node and work back. The latest completion

time of the terminating node is set equal to the makespan of the schedule, i.e., cL(T)=CM. The latest completion time
of each node is determined by the latest starting times of its job successor and its machine successor if it has

cL(r) = min{sL[SJ (r)], sL[SM(r)]}. (5)

In case, a node has no job successor or machine successor, the corresponding term is replaced with “∞”.
The concept of total float of an operation is the amount by which the starting time of the operation can be delayed

beyond its earliest possible starting time without delaying the makespan. The total float of an operation r , represented
by F(r), can easily be expressed:

F(r) = sL(r) − sE(r). (6)

If an operation has a total float of zero, any delay in the start of the operation will delay the completion of the
schedule. Such an operation is critical to the completion of all the jobs on time. Any operation with a total float of zero
is a critical one. A path from node S to T that consists entirely of critical operations connected with each other in time
is called a critical path. The critical path is highlighted in Fig. 6. Here, the length of a path (S, r1, r2, . . . , rq, T) is
defined as the sum of the processing times of the operations r1 up to and including rq . The critical path is the longest
path in a directed graph. The makespan of a schedule is equal to the length of the critical path [25]. There may be more
than one critical path in a directed solution graph.

4.3. Moving an operation

The move of an operation r is to delete the operation from its current position and insert it at another feasible position
of the solution graph. Let G be a solution graph. Operation r is deleted from G by removing the disjunctive arc from
r and the disjunctive arc to r , connecting PM(r) to SM(r) with a dashed arc, and setting the weight of node r equal
to “0”. Let G− be the graph obtained from G when an operation is removed (for the remainder, the superscript ‘−’
refers to the situation after the remove of an operation, and r denotes the operation to be moved). Let CM(G) be the
makespan of solution graph G. Since G− is obtained by deleting one operation from G, it is obvious that the makespan
of G− is no larger than CM(G).

Let G′ be the solution graph obtained from G− after operation r is inserted again. Since operation r is deleted from
G, it is necessary to find another feasible position in G− to reallocate r so that the makespan of G′ is no larger than
CM(G). In order to do this, we take CM(G) as the “required” makespan of G− when calculating the latest starting and
completion time for each operation remained in G−.

For a node v, it can be started as late as at sL−(v) on machine M(v) without delaying the required makespan while
its immediate machine predecessor can be finished as early as at cE−[PM(v)] in G−. This forms a maximum idle
time interval {cE−[PM(v)], sL−(v)} before operation v on machine M(v). If operation v has no machine predecessor,
cE−[PM(v)] is replaced with “0”.

Given a time interval [tS
j , tE

j], beginning at tS
j and ending at tE

j on machine j , the deleted operation r can only be
started after the earliest completion of its job predecessor, and has to be finished before the latest starting time of its
job successor. The interval is said to be feasible for r if,

max{tS
j , cE−[PJ(r)]} + prj � min{tE

j , sL−[SJ (r)]}, (7)

where prj is the processing time of operation r on machine j . A time interval [tS
j , tE

j] on machine j is said to be
assignable for operation r if

max{tS
j , cE−[PJ(r)]} + prj < min{tE

j , sL−[SJ (r)]}. (8)

J. Gao et al. / Computers & Operations Research 35 (2008) 2892–2907 2899

Hence, the maximum idle time interval before v in G− is assignable for r if

max{cE−[PM(v)], cE−[PJ(r)]} + prM(v) < min{sL−(v), sL−[SJ (r)]}. (9)

When the maximum idle time interval before operation v is assignable for the deleted operation r , r is inserted on
the machine sequence of M(v) before v. This is achieved by removing the dashed arc from PM(v) to v, connecting
PM(v) to r and r to v with dashed arcs, and setting the weight of node r equal to the processing time of operation r on
machine M(v).

Theorem 1. If CM(G′) = CM(G), then r is not a critical operation in G′.

Proof. When r is inserted before v on machine M(v), v is the immediate machine successor of r , SM(r). According
to the definition of latest starting/completion time, the insertion of node r does not change the latest starting times of
SM(r) and SJ (r) as long as the makespan of G′ is equal to the required one of G−. It is notable that the required
makespan of G− is set to be CM(G) when calculating the latest starting and completion times for the operations in
G−. Since cL ′

(r) = min{sL ′[SM(r)], sL ′[SJ (r)]}, cL ′
(r) = min{sL−(v), sL−[SJ (r)]} if CM(G′) = CM(G).

According to the definition of earliest starting time, the insertion of node r does not change the earliest starting times
of PM(r) and PJ(r). After the insertion of node r before v on machine M(v), the machine predecessor of v in G−
becomes the machine predecessor of r in G′. Hence, sE ′

(r) = max{cE−[PM(v)], cE−[PJ(r)]}. If CM(G′) = CM(G),
the total float time of r in G′ is

F ′(r) = max{cE−[PM(v)], cE−[PJ(r)]} + prM(v) − min{sL−(v), sL−[SJ (r)]}. (10)

According to inequality (9), F ′(r) > 0. Hence r is not a critical operation in G′ if CM(G′) = CM(G). �

Corollary 1. Let L′(P) be the length of path P in G′. For any P in G′, if r ∈ P , then L′(P) < CM(G).

Proof. According to Theorem 1, when the makespan of G′ is equal to CM(G), r is not a critical operation. The critical
path is composed all of critical operations. Therefore, if CM(G′)=CM(G), P is not a critical path because r is included
in P . The length of the non-critical path will be less than the makespan. Hence, if r ∈ P , L′(P) < CM(G). �

The solution graph G′ is obtained from G by changing connections associated to operation r . The new paths in G′
are created by adding or removing r from the paths in G. Considering Corollary 1, the length of the added paths is no
larger than the makespan of G. Hence moving an operation does not add any new path whose length is equal to CM(G)

in G′, and the makespan of G′ is no larger than CM(G).

4.4. VND procedure

The makespan of a solution is defined by the length of its critical paths, in other words, the makespan cannot be
reduced while maintaining the current critical paths. The mission of local search is to identify and break the existent
critical paths one by one in order to get a new schedule with smaller makespan.

If an operation r is critical, then at least one of PJ(r) and PM(r) must be critical, if they exist. In this study, if a
job predecessor and a machine predecessor of a critical operation are both critical, then choose the job predecessor. In
order to reduce the computation workload, we consider only a single arbitrarily selected critical path P of G.

Local search of moving one operation consists of: (a) delete an operation of the arbitrarily selected critical path P ;
(b) find an assignable interval for it; and then (c) allocate it in the found interval. For the deleted operation r , it has
to be started after the earliest completion time of its job predecessor (cE−[PJ(r)]), and it has to be completed before
the latest starting time of its job successor (sL−[SJ (r)]). Hence, it is no use to insert r before an operation whose
earliest completion time is less than cE−[PJ(r)], or to insert r after an operation whose latest starting time is larger
than sL−[SJ (r)]. When we look for the assignable time interval for the deleted operation r , we do not investigate the
intervals before operations whose earliest completion times are less than cE−[PJ(r)] or after operations whose latest
starting times are larger than sL−[SJ (r)].

The basic scheme for local search of moving one critical operation is presented in Fig. 7.

2900 J. Gao et al. / Computers & Operations Research 35 (2008) 2892–2907

Fig. 7. Local search of moving one operation.

(I)(I) Identify a critical path Identify a critical path PP for a given incumbent solution for a given incumbent solution SS;;

(II)(II) Set Set rr to be the first critical operation of to be the first critical operation of PP;;

(III)(III) Repeat Repeat

(a)(a) Set Set vv ((vv rr) to be an operation in solution) to be an operation in solution SS;;

(b)(b) Repeat Repeat

i.i. Delete Delete vv and and rr from solution graph from solution graph GG of of SS to get to get GG ;;

ii.ii. Search for an assignable time interval for Search for an assignable time interval for rr in in GG ;;

iii.iii. If the assignable interval for If the assignable interval for rr is found, insert is found, insert rr in the interval to get in the interval to get G G ’; ’;

Otherwise, go to (vi) Otherwise, go to (vi)

iv.iv. Search for an assignable time interval for Search for an assignable time interval for vv inin GG ’; ’;

v.v. If an assignable interval for If an assignable interval for vv is found, insert is found, insert vv in the interval to get in the interval to get G G’’

vi.vi. If either the assignable interval for If either the assignable interval for rr or or vv is not found, set is not found, set vv ((vv rr) to be the next) to be the next

operation in operation in GG

(c)(c) Until the assignable intervals for both Until the assignable intervals for both rr and and vv are found or are found or vv is the last operation in is the last operation in

GG;;

(d)(d) If the assignable interval for either If the assignable interval for either rr or or vv is not found, set is not found, set rr to be the next critical to be the next critical

operation of operation of PP;;

(IV)(IV) Until both the assignable intervals for Until both the assignable intervals for rr and and vv are found or are found or r r is the dummy terminating is the dummy terminating

node. node.

Fig. 8. Local search of moving two operations.

When the local optimum of moving one operation is found, there is a critical path P that cannot be broken by moving
one of its operations. That is, no assignable time interval can be found for any operation r ∈ P in the solution graph
G−. Deleting an additional operation v(v �= r) from G− brings more idle time, and may create time intervas assignable
for r .

The idea of VND is straightforward: when the local optimum of moving one critical operation is found, the solution
may be further improved by moving two operations simultaneously, at least one of which is critical. In the local search
of moving two operations, operations r (r is a critical operation) and v are deleted simultaneously from G to get G−,
we then search for an assignable time interval for r in G−. When the assignable time interval is found and r is inserted
to get solution G−’, we search for an assignable time interval for v in G−’. The basic scheme for local search of moving
two operations is shown in Fig. 8.

The local optima of moving two operations may be further improved by local search of moving three or more opera-
tions. Unfortunately, computational complexity increases quickly with the number of operations moved, so computation
time increases rapidly. In this study, the VND only involves local search of moving one operation and local search of
moving two operations.

J. Gao et al. / Computers & Operations Research 35 (2008) 2892–2907 2901

Fig. 9. Framework of the proposed hybrid genetic algorithm.

4.5. Framework of the hybrid GA

The main positive effect of hybridizing GAs with local search is the improvement in the convergence speed to local
optima. On the other hand, the main negative effect is the increase in the computation time per generation. For the fJSP
problem, moving two operations is much more computationally complex than moving only one. In this study, local
search of moving one operation is repeatedly implemented until local optima are found while local search of moving
two operations is implemented only once in each iteration of the genetic search. Hence, local search of moving two
operations does not tend to find the local optima in one iteration. The framework of the proposed hGA is illustrated in
Fig. 9.

5. Computational results

The hGA was implemented in Delphi on a 3.0 GHz Pentium and tested on a large number of problem instances from
the literature. We compare our results with results obtained by other authors.

Several sets of problem instances were considered:

(i) The first data set (XWdata) is a set of three problems from Kacem et al. [13,26] and Xia and Wu [15].
(ii) The second data set (BRdata) is a set of 10 problems from Brandimarte [6]. The data were randomly generated

using a uniform distribution between given limits.
(iii) The third data set (BCdata) is a set of 21 problems from Barnes and Chambers [27]. As a job shop can be extended

to a flexible job shop by simply adding some machines that already exist in the job shop, the data were constructed
from three of the most challenging classical job shop scheduling problems [28,29] (mt10, la24, la40) by replicating
machines. The processing times for operations on replicated machines are assumed to be identical to the original.

2902 J. Gao et al. / Computers & Operations Research 35 (2008) 2892–2907

Table 1
Results on XWdata

Problem (n × m) Objective AL+CGA PSO+SA moGA Proposed hGA

Result popSize AV(CPU)

CM 15 16 15 16 15 14
8 × 8 WM 12 13 14 12 300 22.4

WT 79 75 75 73 73 77

CM 7 7 7 7
10 × 10 WM 5 6 5 5 300 43.1

WT 45 44 43 43

CM 24 12 11
15 × 10 WM 11 11 11 500 112.2

WT 91 91 91

(iv) The fourth test sample (DPdata) is a set of 18 problems from Dauzère-Pérès and Paulli [10]. The set of machines
capable of performing an operation was constructed by letting a machine be in that set with a probability that
ranges from 0.1 to 0.5.

(v) The fifth test sample (HUdata) is a set of 129 problems from Hurink et al. [8]. The problems were obtained from
three problems by Fisher and Thompson [28] (mt06, mt10, mt20) and 40 problems from Lawrence [29] (la01-
la40). Each set Aik is equal to the machine to which operation oik is assigned in the original problem, plus any
of the other machines with a given probability. Depending on this probability, Hurink et al. generated three sets
of test problems: edata, rdata and vdata. The first set contains the problems with the least amount of flexibility,
whereas the average size of Aij is equal to 2 in rdata and m/2 in vdata.

The non-deterministic nature of our algorithm makes it necessary to carry out multiple runs on the same problem
instance in order to obtain meaningful results. We ran our algorithm five times. The parameters used in the hGA
are chosen experimentally in order to get a satisfactory solution quality in an acceptable time span. Depending on
the complexity of the problems, the population size of the GA ranges from 300 to 3000. The number of maximal
generations is limited to 200. Other parameters are summarized in the following:

Enhanced order crossover probability: 0.4 Immigration mutation probability: 0.4
Uniform crossover probability: 0.4 Allele-based mutation probability: 0.4

AV(CPU) stands for average computer-independent CPU times in seconds. These values were computed using the
normalization coefficients of Dongarra [30], as interpreted by Vaessens et al. [31].

The proposed hGA is first tested on the three problems of XWdata. For each problem, the best solutions we got at
each of the five runs are different in terms of machine assignment and operation sequence, yet they all have the same
performance on the three considered objectives. Kacem et al. [13,26], Zhang and Gen [14], and Xia and Wu [15] treated
exactly the same problems. They have reported the obtained schedules without the CPU time used. Table 1 gives the
performance of the proposed method compared with other algorithms. “AL + CGA” is the algorithm by Kacem et al.
“PSO + SA” is the algorithm by Xia and Wu. “moGA” is the algorithm by Zhang and Gen. Column popSize gives the
population size of GA. The solution obtained by our algorithm for problem 15 × 10 is illustrated in Fig. 10.

We also conducted experiments on the other four data sets. Because the data sets have been tested with a single
objective (makespan) by other authors, we only compare the performance of our algorithm with previous ones on
makespan. For the HUdata problems we consider the lower bounds of makespan computed by Jurisch [7]. For the
remaining data sets only lower bounds computed in a straightforward way are available, therefore they are generally
not very close to the optimum. (LB, UB) denotes the optimum makespan if known, otherwise, the best lower and
upper bound found to date. Flex. denotes the average number of equivalent machines per operation. AV(CM) stands
for the average makespan out of five runs. C#

M, W #
M and W #

T denote makespan, maximal machine workload and total
workload of the best solution found by our algorithm over five runs. M&G is the approach proposed by Mastrolilli and

J. Gao et al. / Computers & Operations Research 35 (2008) 2892–2907 2903

Fig. 10. Gantt chart of the obtained solution for problem 15 × 10.

Table 2
Results on BRdata

Problem n × m Flex. (LB, UB) M&G Proposed hGA

CM AV(CM) popSize C#
M AV(CM) W #

M W #
T AV(CPU)

Mk01 10 × 6 2.09 (36, 42) *40 40.0 3000 *40 40 36 167 1.47
Mk02 10 × 6 4.10 (24, 32) *26 26.0 3000 *26 26 26 151 3.44
Mk03 15 × 8 3.01 (204, 211) *204 204.0 2000 *204 204 204 850 17.47
Mk04 15 × 8 1.91 (48, 81) *60 60.0 3000 *60 60 60 375 3.42
Mk05 15 × 4 1.71 (168, 186) 173 173.0 1000 *172 172 172 687 6.82
Mk06 10 × 15 3.27 (33, 86) *58 58.4 2000 *58 58 56 427 5.30
Mk07 20 × 5 2.83 (133, 157) 144 147.0 1000 *139 139 139 693 6.23
Mk08 20 × 10 1.43 523 *523 523.0 1000 *523 523 523 2524 8.44
Mk09 20 × 10 2.53 (299, 369) *307 307.0 1000 *307 307 299 2312 18.71
Mk10 20 × 15 2.98 (165, 296) 198 199.2 2000 *197 197 197 2029 19.36

Gambardella [11]. Tables 2,3 and 4 give results on BRdata, BCdata and DPdata, respectively. The makespan associated
with an asterisk is the best known upper bound by far. We only report summary results on 129 instances of HUdata.

We compute the relative error of our algorithm for each instance of HUdata, i.e., the percentage by which the best
makespan (UB) obtained is above the best known lower bound (LB), that is 100 ∗ (UB − LB)/LB. Table 5 gives the
mean relative error of best makespan and average makespan over five runs on HUdata.

A solution obtained by our algorithm is illustrated in the Appendix. Detailed information about the results on HUdata
and the solutions (including the assigned machine and the starting/completion time of each operation) obtained by our
algorithm for each instance is available from the corresponding author (calebgao@yahoo.com).

A comparative overview of the hGA’s best makespan, average makespan and computer-independent CPU time out
of five runs is given in Table 6. Column Better, Equal and Worse represents the number of examples for which hGA’s
makespan is better, equal or worse than those found by Mastrolilli and Gambardella [11]. For some instances, their
makespan found by the hGA is equal to the corresponding known lower bound, hence is the optimal value. The bracketed
number denotes the number of optimal solutions. Column CPU time gives the sum of the average computer-independent
CPU time out of five runs to compute all the solutions of each data set.

2904 J. Gao et al. / Computers & Operations Research 35 (2008) 2892–2907

Table 3
Results on BCdata

Problem n × m Flex. (LB, UB) M&G Proposed hGA

CM AV(CM) popSize C#
M AV(CM) W #

M W #
T AV(CPU)

mt10c1 10 × 11 1.10 (655, 927) 928 928.0 3000 *927 927.2 631 5109 12.87
mt10cc 10 × 12 1.20 (655, 914) *910 910.0 3000 *910 910 631 5109 12.24
mt10x 10 × 11 1.10 (655, 929) *918 918.0 3000 *918 918 556 5109 12.69
mt10xx 10 × 12 1.20 (655, 929) *918 918.0 3000 *918 918 556 5109 11.70
mt10xxx 10 × 13 1.30 (655, 936) *918 918.0 3000 *918 918 556 5109 11.52
mt10xy 10 × 12 1.20 (655, 913) 906 906.0 3000 *905 905 548 5109 12.24
mt10xyz 10 × 13 1.30 (655, 849) *847 850.0 3000 849 849 534 5109 10.71
setb4c9 15 × 11 1.10 (857, 924) 919 919.2 3000 *914 914 857 7727 45.99
setb4cc 15 × 12 1.20 (857, 909) *909 911.6 3000 914 914 857 7727 38.79
setb4x 15 × 11 1.10 (846, 937) *925 925.0 3000 *925 931 846 7727 43.20
setb4xx 15 × 12 1.20 (846, 930) *925 926.4 3000 *925 925 846 7727 42.57
setb4xxx 15 × 13 1.30 (846, 925) *925 925.0 3000 *925 925 846 7727 36.09
setb4xy 15 × 12 1.20 (845, 924) *916 916.0 3000 *916 916 845 7727 41.49
setb4xyz 15 × 13 1.30 (838, 914) *905 908.2 3000 *905 905 838 7727 39.15
seti5c12 15 × 16 1.07 (1027, 1185) *1174 1174.2 3000 1175 1175 1027 11 472 72.27
seti5cc 15 × 17 1.13 (955, 1136) *1136 1136.4 3000 1138 1138 888 11 472 63.00
seti5x 15 × 16 1.07 (955, 1218) *1201 1203.6 3000 1204 1204 938 11 472 66.78
seti5xx 15 × 17 1.13 (955, 1204) *1199 1200.6 3000 1202 1203 938 11 472 63.72
seti5xxx 15 × 18 1.20 (955, 1213) *1197 1198.4 3000 1204 1204 938 11 472 63.36
seti5xy 15 × 17 1.13 (955, 1148) *1136 1136.4 3000 *1136 1136.5 888 11 472 63.18
seti5xy 15 × 18 1.20 (955, 1127) *1125 1126.6 3000 1126 1126 835 11 472 57.96

Table 4
Results on DPdata

Problem n × m Flex. (LB, UB) M&G Proposed hGA

CM AV(CM) popSize C#
M AV(CM) W #

M W #
T AV(CPU)

01a 10 × 5 1.13 (2505, 2530) *2518 2528 3000 *2518 2518 2505 11 137 102.71
02a 10 × 5 1.69 (2228, 2244) *2231 2234 3000 *2231 2531 2231 11 137 140.98
03a 10 × 5 2.56 (2228, 2235) *2229 2229.6 1000 *2229 2229.3 2229 11 137 106.53
04a 10 × 5 1.13 (2503, 2565) *2503 2516.2 3000 2515 2518 2503 11 085 95.93
05a 10 × 5 1.69 (2189, 2229) *2216 2220 1000 2217 2218 2217 11 045 143.95
06a 10 × 5 2.56 (2162, 2216) 2203 2206.4 500 *2196 2198 2196 10 962 111.83
07a 15 × 8 1.24 (2187, 2408) *2283 2297.6 1000 2307 2309.8 2287 16 485 356.32
08a 15 × 8 2.42 (2061, 2093) *2069 2071.4 1000 2073 2076 2070 16 485 330.08
09a 15 × 8 4.03 (2061, 2074) *2066 2067.4 500 *2066 2067 2065 16 485 327.49
10a 15 × 8 1.24 (2178, 2362) *2291 2305.6 1000 2315 2315.2 2263 16 532 345.19
11a 15 × 8 2.42 (2017, 2078) *2063 2065.6 500 2071 2072 2069 16 418 360.45
12a 15 × 8 4.03 (1969, 2047) 2034 2038 300 *2030 2030.6 2030 16 172 329.71
13a 20 × 10 1.34 (2161, 2302) 2260 2266.2 500 *2257 2260 2254 21 610 462.85
14a 20 × 10 2.99 (2161, 2183) *2167 2168 500 *2167 2167.6 2164 21 610 587.13
15a 20 × 10 5.02 (2161, 2171) 2167 2167.2 200 *2165 2165.4 2165 21 610 669.92
16a 20 × 10 1.34 (2148, 2301) *2255 2258.8 1000 2256 2258 2242 21 593 452.41
17a 20 × 10 2.99 (2088, 2169) 2141 2144 500 *2140 2142 2138 21 307 616.34
18a 20 × 10 5.02 (2057, 2139) 2137 2140.2 200 *2127 2130.7 2127 21 204 667.01

Totally, we found 38 new better solutions in terms of best solutions out of five runs, among which four solutions are
optimal ones. Because GAs are by nature multipoint stochastic search methods, the proposed hGA seems to be quite
stable and time consuming. The average makespan of the hGA over five runs is better than that of M&G on 87 test
instances. Yet, the CPU time of the hGA is also much longer than that of M&G.

J. Gao et al. / Computers & Operations Research 35 (2008) 2892–2907 2905

Table 5
Mean relative error on HUdata

Problem class n × m edata rdata vdata

M&G hGA M&G hGA M&G hGA

mt6/10/20 6 × 6 0.00 0.00 0.34 0.34 0.00 0.00
10 × 10 (0.10) (0.10) (0.36) (0.34) (0.00) (0.00)
20 × 5

la01-05 10 × 5 0.00 0.00 0.11 0.07 0.00 0.00
(0.00) (0.00) (0.24) (0.07) (0.11) (0.00)

la06-10 15 × 5 0.00 0.00 0.03 0.00 0.00 0.00
(0.00) (0.00) (0.08) (0.00) (0.03) (0.00)

la11-15 20 × 5 0.29 0.29 0.02 0.00 0.00 0.00
(0.29) (0.29) (0.02) (0.00) (0.01) (0.00)

la16-20 10 × 10 0.00 0.02 1.73 1.64 0.00 0.00
(0.00) (0.02) (1.77) (1.64) (0.00) (0.00)

la21-25 15 × 10 5.62 5.60 3.82 3.57 0.70 0.60
(5.93) (5.66) (4.38) (3.69) (0.85) (0.68)

la26-30 20 × 10 3.47 3.28 0.59 0.64 0.11 0.11
(3.76) (3.32) (0.76) (0.72) (0.18) (0.13)

la31-35 30 × 10 0.30 0.32 0.09 0.09 0.01 0.00
(0.32) (3.32) (0.14) (0.12) (0.03) (0.00)

la36-40 15 × 15 8.99 8.82 3.97 3.86 0.00 0.00
(9.13) (8.95) (4.47) (3.92) (0.00) (0.00)

Table 6
Summary results

Data set # CM AV(CM) CPU time

Better Equal Worse Better Equal Worse M&G hGA

XWdata 3 2 1 0 2 1 0 – 177
BRdata 10 3 (0) 7 (3) 0 4 6 0 74 91
BCdata 21 3 (0) 10 (0) 8 7 6 8 356 821
DPdata 18 6 (0) 4 (0) 8 13 0 5 2467 6206
Hudata 129 24 (4) 97 (73) 8 61 64 4 16 568 70 745

6. Conclusions and future study

We have developed a new approach hybridizing genetic algorithm with variable neighborhood descent to exploit the
“global search ability” of genetic algorithm and “the local search ability” of variable neighborhood descent for solving
multiobjective flexible job shop scheduling problem. An innovative two-vector representation scheme is proposed and
an effective decoding method interprets each chromosome into an active schedule. A reorder procedure is used to unify
the operation sequence in the chromosome with the sequence in the decoded schedule to facility genetic operators to
pass down the good traits of the parents to their children. In order to enhance the heritability of crossover operation,
operation sequence of Gen et al.’s representation is transformed into the format of permutation representation. Two
crossover methods and two mutation operators were proposed for the genetic algorithm.

In order to enhance the search ability, VNS works under the framework of genetic search. Two VNSs are used: (a)
moving one operation, and (b) moving two operations. Both local searches aim to break critical paths in a solution one
by one so as to acquire a new solution with smaller makespan. Local search of moving one operation breaks critical

2906 J. Gao et al. / Computers & Operations Research 35 (2008) 2892–2907

paths by deleting a critical operation from its current position and reallocating it on an assignable interval elsewhere.
A novel method based on the concept of earliest and latest event time is used to find assignable intervals for the deleted
operations. When the local optimum of moving one operation is found, the solution may be further improved by moving
two operations simultaneously.

The proposed algorithm was tested on 181 benchmark problems. These results were compared with the results
obtained by other algorithms. We got the same best solution as that obtained by the combined efforts of previous works
for 119 instances, and found 38 new better solutions.

Future research directions include local search of moving three or more operations, the balance between genetic
search and local search.

Acknowledgments

The authors would like to say thanks to the two anonymous reviewers and Prof. Linus Schrage for their comments.
This work is partly supported by Waseda University Grant for Special Research Projects 2004 and the Ministry of
Education, Science and Culture, the Japanese Government: Grant-in-Aid for Scientific Research (No. 17510138). This
paper is also supported in part by National Natural Science Foundation of China (NSFC) under Grant 70433003.

Appendix

Below is the schedule we obtained for problem la 21 of vdata of HUdata. Since the schedule is too complex to be
shown in a Gantt chart, the starting and completion times of the operations assigned on each machine are as follows:

M1: (o12,1: 0–28) (o14,2: 28–78) (o13,3: 82–109) (o13,4: 109–171) (o11,3: 171–191) (o12,4: 191–236) (o8,4: 236–290)
(o14,5: 290–370) (o9,5: 370–407) (o13,7: 407–455) (o1,7: 455–508) (o8,7: 508–595) (o8,8: 595–636) (o1,9:
636–657) (o3,8: 657–694) (o11,10: 694–712) (o4,10: 712–805).

M2: (o11,1: 0–31) (o3,1: 31–50) (o3,2: 50–133) (o15,2: 133–188) (o2,4: 188–230) (o2,5: 230–309) (o11,5: 309–334)
(o13,6: 334–401) (o6,6: 401–408) (o5,5: 408–425) (o10,5: 425–499) (o12,7: 500–522) (o12,8: 523–594) (o6,9:
595–689) (o5,9: 690–738) (o2,10: 739–804).

M3: (o5,1: 0–79) (o4,2: 79–166) (o4,3: 166–190) (o4,4: 190–267) (o15,4: 273–281) (o11,4: 287–298) (o9,4: 304–329)
(o7,6: 330–379) (o2,6: 380–456) (o13,8: 457–498) (o10,6: 499–526) (o7,8: 530–553) (o7,9: 557–612) (o4,9:
616–695) (o3,9: 699–759) (o13,10: 763–776) (o5,10: 780–801).

M4: (o14,1: 0–12) (o10,1: 12–106) (o10,2: 106–190) (o9,2: 193–225) (o9,3: 226–303) (o15,5: 306–353) (o15,6:
356–432) (o15,7: 435–473) (o2,7: 476–550) (o3,7: 553–612) (o5,8: 615–687) (o15,10: 730–762) (o3,10:
762–805).

M5: (o4,1: 0–60) (o2,2: 66–97) (o14,3: 97–177) (o6,3: 177–186) (o6,4: 186–196) (o13,5: 196–294) (o1,5: 294–315)
(o1,6: 315–386) (o4,6: 386–424) (o4,7: 424–511) (o6,8: 511–572) (o14,9: 572–666) (o8,9: 666–709) (o10,10:
709–805).

M6: (o8,1: 0–9) (o8,2: 9–29) (o12,2: 29–126) (o11,2: 126–150) (o8,3: 150–189) (o10,3: 190–268) (o7,5: 278–315)
(o8,5: 324–360) (o11,6: 369–441) (o11,7: 450–517) (o10,7: 526–595) (o10,8: 595–664) (o10,9: 664–709) (o8,10:
716–723) (o9,9: 730–765) (o9,10: 772–798).

M7: (o1,1: 0–34) (o13,2: 34–82) (o6,2: 82–177) (o5,3: 182–275) (o5,4: 280–371) (o12,6: 376–470) (o5,6: 475–514)
(o4,8: 519–555) (o1,8: 560–607) (o15,9: 612–625) (o9,8: 630–714) (o12,10: 719–800).

M8: (o7,1: 0–28) (o7,2: 29–87) (o5,2: 88–164) (o9,1: 165–192) (o3,3: 195–226) (o7,4: 229–269) (o6,5: 272–304)
(o4,5: 307–373) (o8,6: 376–444) (o7,7: 447–496) (o14,8: 499–559) (o11,8: 562–646) (o11,9: 649–678) (o1,10:
681–704) (o14,10: 707–802).

M9: (o6,1: 0–35) (o1,2: 35–90) (o7,3: 91–106) (o2,3: 107–118) (o1,3: 119–213) (o1,4: 214–229) (o15,3: 230–266)
(o3,4: 267–358) (o3,5: 359–412) (o6,7: 413–440) (o14,7: 441–468) (o9,7: 469–534) (o5,7: 535–577) (o13,9:
578–623) (o12,9: 624–713) (o7,10: 714–804).

M10: (o13,1: 0–27) (o2,1: 27–66) (o15,1: 66–127) (o12,3: 127–185) (o14,4: 185–235) (o12,5: 236–312) (o10,4: 312–393)
(o14,6: 393–412) (o9,6: 417–420) (o3,6: 425–499) (o15,8: 504–571) (o2,8: 576–669) (o2,9: 674–724) (o6,10:
729–800).

J. Gao et al. / Computers & Operations Research 35 (2008) 2892–2907 2907

References

[1] Gen M, Tsujimura Y, Kubota E. Solving job-shop scheduling problem using genetic algorithms. In: Proceedings of the 16th international
conference on computer and industrial engineering, Ashikaga, Japan; 1994. p. 576–9.

[2] Brucker P, Schlie R. Job-shop scheduling with multi-purpose machines. Computing 1990;45(4):369–75.
[3] Stecke KS. Formulation and solution of nonlinear integer production planning problems for flexible manufacturing systems. Management

Science 1983;29(3):273–88.
[4] Akella R, ChoongY. Performance of a hierarchical production scheduling policy. IEEE Transactions on Components, Hybrids and Manufacturing

Technology 1984;7(3):225–48.
[5] Bona B, Brandimarte P. Hybrid hierarchical scheduling and control systems in manufacturing. IEEE Transactions on Robotics and Automation

1990;6(6):673–86.
[6] Brandimarte P. Routing and scheduling in a flexible job shop by tabu search. Annals of Operations Research 1993;41:157–83.
[7] Jurisch B. Scheduling jobs in shops with multi-purpose machines. Ph.D. dissertation, Fachbereich Mathematik/Informatik, Universitat

Osnabruck; 1992.
[8] Hurink E, Jurisch B, Thole M. Tabu search for the job shop scheduling problem with multi-purpose machine. Operations Research Spektrum

1994;15:205–15.
[9] Chambers JB. Classical and flexible job shop scheduling by tabu search. Ph.D. dissertation, University of Texas at Austin, USA; 1996.

[10] Dauzère-Pérès S, Paulli J. An integrated approach for modeling and solving the general multiprocessor job-shop scheduling problem using tabu
search. Annals of Operations Research 1997;70(3):281–306.

[11] Mastrolilli M, Gambardella LM. Effective neighborhood functions for the flexible job shop problem. Journal of Scheduling 2000;3(1):3–20.
[12] Yang J-B. GA-based discrete dynamic programming approach for scheduling in FMS environments. IEEE Transactions on Systems, Man, and

Cybernetics—Part B 2001;31(5):824–35.
[13] Kacem I, Hammadi S, Borne P.Approach by localization and multiobjective evolutionary optimization for flexible job-shop scheduling problems.

IEEE Transaction Systems, Man, and Cybernetics—Part C 2002;32(1):1–13.
[14] Zhang H-P, Gen M. Multistage-based genetic algorithm for flexible job-shop scheduling problem. Journal of Complexity International

2005;11:223–32.
[15] Xia W, Wu Z. An effective hybrid optimization approach for multi-objective flexible job-shop scheduling problem. Computers & Industrial

Engineering 2005;48:409–25.
[16] Wu Z, Weng M-X. Multiagent scheduling method with earliness and tardiness objectives in flexible job shops. IEEE Transactions on System,

Man, and Cybernetics—Part B 2005;35(2):293–301.
[17] Vaessens RJM. Generalized job shop scheduling: complexity and local search. Ph.D. dissertation, Eindhoven University of Technology; 1995.
[18] Brucker P, Neyer J. Tabu-search for the multi-mode job-shop problem. OR Spectrum 1998;20:21–8.
[19] Baker K. Introduction to sequencing and scheduling. New York: Wiley; 1974.
[20] Gen M, Cheng R. Genetic algorithms & engineering design. New York: Wiley; 1997.
[21] Moscato P, Norman M. A memetic approach for the traveling salesman problem: implementation of a computational ecology for combinatorial

optimization on message-passing systems. In: Proceedings of the international conference on parallel computing and transputer applications,
Amsterdam; 1992.

[22] Gen M, Cheng R. Genetic algorithms & engineering optimization. New York: Wiley; 2000. p. 1–30.
[23] Mladenovic N, Hansen P. Variable neighborhood search. Computers & Operations Research 1997;24(11):1097–100.
[24] Hansen P, Mladenovic N. Variable neighborhood search: principles and applications. European Journal of Operational Research 2001;130:

449–67.
[25] Balas E. Machine sequencing via disjunctive graphs: an implicit enumeration algorithm. Operations Research 1969;17:941–57.
[26] Kacem I, Hammadi S, Borne P. Pareto-optimality approach for flexible job-shop scheduling problems: hybridization of evolutionary algorithms

and fuzzy logic. Mathematics and Computers in Simulation 2002;60:245–76.
[27] Barnes JW, Chambers JB. Flexible job shop scheduling by tabu search. Graduate program in operations research and industrial engineering,

The University of Texas at Austin 1996; Technical Report Series: ORP96-09; 〈http://ww.cs.utexas.edu/users/jbc/〉.
[28] Fisher H, Thompson GL. Probabilistic learning combinations of local job shop scheduling rules. Englewood Cliffs, NJ: Prentice-Hall; 1963.

p. 225–51.
[29] Lawrence S. Supplement to resource constrained project scheduling: an experimental investigation of heuristic scheduling techniques. GSIA,

Carnegie Mellon University, Pittsburgh, PA; 1984.
[30] Dongarra JJ. Performance of various computers using standard linear equations software. Computer Science Department, University of

Tennessee, Knoxville, TN; 2006.
[31] Vaessens RJM, Aarts EHL, Lenstra JK. Job shop scheduling by local search. INFORMS Journal on Computing 1996;8(3):302–17.

http://ww.cs.utexas.edu/users/jbc/

	A hybrid genetic and variable neighborhood descent algorithm for flexible job shop scheduling problems
	Introduction
	Literature review
	A GA for fJSP
	Two-vector representation
	Priority-based decoding and reordering
	Crossover operators
	Mutation operators
	Selection

	Variable neighborhood descent
	Solution graph
	Earliest event time and latest event time
	Moving an operation
	VND procedure
	Framework of the hybrid GA

	Computational results
	Conclusions and future study
	Acknowledgments
	References

